A Practical Recipe of Contrastive Learning for Machine Learning Interviews
In many ML design scenarios, challenges around model supervision are common. These include issues such as noisy labels, limited labeled data, or labels that are only indirectly related to the target tasks. Demonstrating the ability to apply self-supervised and semi-supervised learning techniques to tackle these problems can significantly differentiate candidates by showcasing data-efficient and robust model designs. Among these techniques, contrastive learning stands…