Implement a multi-layer encoder with residual connections by completing the implementation of the `MultiLayerEncoder` class by filling in the missing parts, specifically the forward pass logic.
{
"constructor": {
"input_dim": 128,
"hidden_dim": 256,
"num_layers": 3,
"activation": "relu"
},
"input_data": "A tensor of shape (batch_size, input_dim) representing the input data",
"output": "A tensor of shape (batch_size, hidden_dim) representing the encoded output"
}
{
"constructor": {
"input_dim": 64,
"hidden_dim": 128,
"num_layers": 5,
"activation": "tanh"
},
"input_data": "A tensor of shape (batch_size, input_dim) representing the input data",
"output": "A tensor of shape (batch_size, hidden_dim) representing the encoded output"
}
use python data or natural language description